Extensions 1→N→G→Q→1 with N=C42.C2 and Q=D5

Direct product G=N×Q with N=C42.C2 and Q=D5
dρLabelID
D5×C42.C2160D5xC4^2.C2320,1359

Semidirect products G=N:Q with N=C42.C2 and Q=D5
extensionφ:Q→Out NdρLabelID
C42.C21D5 = D20.4Q8φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:1D5320,693
C42.C22D5 = C42.70D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:2D5320,694
C42.C23D5 = C42.216D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:3D5320,695
C42.C24D5 = C42.148D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:4D5320,1361
C42.C25D5 = D207Q8φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:5D5320,1362
C42.C26D5 = C42.150D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:6D5320,1364
C42.C27D5 = C42.151D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:7D5320,1365
C42.C28D5 = C42.152D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:8D5320,1366
C42.C29D5 = C42.153D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:9D5320,1367
C42.C210D5 = C42.154D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:10D5320,1368
C42.C211D5 = C42.155D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:11D5320,1369
C42.C212D5 = C42.156D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:12D5320,1370
C42.C213D5 = C42.157D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:13D5320,1371
C42.C214D5 = C42.158D10φ: D5/C5C2 ⊆ Out C42.C2160C4^2.C2:14D5320,1372
C42.C215D5 = C42.236D10φ: trivial image160C4^2.C2:15D5320,1360
C42.C216D5 = C42.237D10φ: trivial image160C4^2.C2:16D5320,1363

Non-split extensions G=N.Q with N=C42.C2 and Q=D5
extensionφ:Q→Out NdρLabelID
C42.C2.1D5 = C42.8D10φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.1D5320,101
C42.C2.2D5 = Dic10.4Q8φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.2D5320,690
C42.C2.3D5 = C42.215D10φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.3D5320,691
C42.C2.4D5 = C42.68D10φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.4D5320,692
C42.C2.5D5 = C42.71D10φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.5D5320,696
C42.C2.6D5 = Dic107Q8φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.6D5320,1357
C42.C2.7D5 = C42.147D10φ: D5/C5C2 ⊆ Out C42.C2320C4^2.C2.7D5320,1358

׿
×
𝔽